Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Build Environ ; 224: 109530, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2003904

ABSTRACT

This study used Computational Fluid Dynamics (CFD) to investigate air disinfection for SARS-CoV-2 by the Upper-Room Germicidal Ultraviolet (UR-GUV), with focus on ceiling impact. The study includes three indoor settings, i.e., low (airport bus), medium (classroom) and high (rehearsal room) ceilings, which were ventilated with 100% clean air (CA case), 80% air-recirculation with a low filtration (LF case), and 80% air-recirculation with a high filtration (HF case). According to the results, using UR-GUV can offset the increased infection risk caused by air recirculation, with viral concentrations in near field (NF) and far field (FF) in the LF case similar to those in the CA case. In the CA case, fraction remaining (FR) was 0.48-0.73 with 25% occupancy rate (OR) and 0.49-0.91 with 45% OR in the bus, 0.41 in NF and 0.11 in FF in the classroom, and 0.18 in NF and 0.09 in FF in the rehearsal room. Obviously, UR-GUV performance in NF can be improved in a room with a high ceiling where FR has a power relationship with UV zone height. As using UR-GUV can only extend the exposure time to get infection risk of 1% (T 1% ) to 8 min in NF in the classroom, and 47 min in NF in the rehearsal room, it is necessary to abide by social distancing in the two rooms. In addition, T 1% in FF was calculated to be 18.3 min with 25% OR and 21.4% with 45% OR in the airport bus, showing the necessity to further wear a mask.

2.
Clin Infect Dis ; 75(8): 1297-1306, 2022 Oct 12.
Article in English | MEDLINE | ID: covidwho-1764554

ABSTRACT

BACKGROUND: High rates of tuberculosis (TB) transmission occur in hospitals in high-incidence countries, yet there is no validated way to evaluate the impact of hospital design and function on airborne infection risk. We hypothesized that personal ambient carbon dioxide (CO2) monitoring could serve as a surrogate measure of rebreathed air exposure associated with TB infection risk in health workers (HWs). METHODS: We analyzed baseline and repeat (12-month) interferon-γ release assay (IGRA) results in 138 HWs in Cape Town, South Africa. A random subset of HWs with a baseline negative QuantiFERON Plus (QFT-Plus) underwent personal ambient CO2 monitoring. RESULTS: Annual incidence of TB infection (IGRA conversion) was high (34%). Junior doctors were less likely to have a positive baseline IGRA than other HWs (OR, 0.26; P = .005) but had similar IGRA conversion risk. IGRA converters experienced higher median CO2 levels compared to IGRA nonconverters using quantitative QFT-Plus thresholds of ≥0.35 IU/mL (P < .02) or ≥1 IU/mL (P < .01). Median CO2 levels were predictive of IGRA conversion (odds ratio [OR], 2.04; P = .04, ≥1 IU/mL threshold). Ordinal logistic regression demonstrated that the odds of a higher repeat quantitative IGRA result increased by almost 2-fold (OR, 1.81; P = .01) per 100 ppm unit increase in median CO2 levels, suggesting a dose-dependent response. CONCLUSIONS: HWs face high occupational TB risk. Increasing median CO2 levels (indicative of poor ventilation and/or high occupancy) were associated with higher likelihood of HW TB infection. Personal ambient CO2 monitoring may help target interventions to decrease TB transmission in healthcare facilities and help HWs self-monitor occupational risk, with implications for other airborne infections including coronavirus disease 2019.


Subject(s)
COVID-19 , Infections , Latent Tuberculosis , Tuberculosis , Carbon Dioxide , Disease Susceptibility , Humans , Incidence , Interferon-gamma Release Tests/methods , Latent Tuberculosis/epidemiology , South Africa/epidemiology , Tuberculin Test , Tuberculosis/diagnosis , Tuberculosis/epidemiology
4.
Photochem Photobiol ; 97(3): 493-497, 2021 05.
Article in English | MEDLINE | ID: covidwho-1148088

ABSTRACT

Aerosol transmission is now widely accepted as the principal way that COVID-19 is spread, as has the importance of ventilation-natural and mechanical. But in other than healthcare facilities, mechanical ventilation is designed for comfort, not airborne infection control, and cannot achieve the 6 to 12 room air changes per hour recommended for airborne infection control. More efficient air filters have been recommended in ventilation ducts despite a lack of convincing evidence that SARS-CoV-2 virus spreads through ventilation systems. Most transmission appears to occur in rooms where both an infectious source COVID-19 case and other susceptible occupants share the same air. Only two established room-based technologies are available to supplement mechanical ventilation: portable room air cleaners and upper room germicidal UV air disinfection. Portable room air cleaners can be effective, but performance is limited by their clean air delivery rate relative to room volume. SARS-CoV-2 is highly susceptible to GUV, an 80-year-old technology that has been shown to safely, quietly, effectively and economically produce the equivalent of 10 to 20 or more air changes per hour under real life conditions. For these reasons, upper room GUV is the essential engineering intervention for reducing COVID-19 spread.


Subject(s)
Air Microbiology , COVID-19/prevention & control , Disinfection/instrumentation , Disinfection/methods , SARS-CoV-2/radiation effects , Ultraviolet Rays , Humans , Virus Inactivation/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL